Spectral Inequalities for Schrödinger Operators with Surface Potentials
نویسنده
چکیده
We prove sharp Lieb-Thirring inequalities for Schrödinger operators with potentials supported on a hyperplane and we show how these estimates are related to LiebThirring inequalities for relativistic Schrödinger operators.
منابع مشابه
On Some Sharp Spectral Inequalities for Schrödinger Operators on Semiaxis
In this paper we obtain sharp Lieb-Thirring inequalities for a Schrödinger operator on semiaxis with a matrix potential and show how they can be used to other related problems. Among them are spectral inequalities on star graphs and spectral inequalities for Schrödinger operators on half-spaces with Robin boundary conditions.
متن کاملSchrödinger Operators with Many Bound States
Consider the Schrödinger operators H± = −d/dx ± V (x). We present a method for estimating the potential in terms of the negative eigenvalues of these operators. Among the applications are inverse Lieb-Thirring inequalities and several sharp results concerning the spectral properties of H±.
متن کاملSpectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates
This note is devoted to optimal spectral estimates for Schrödinger operators on compact connected Riemannian manifolds without boundary. These estimates are based on the use of appropriate interpolation inequalities and on some recent rigidity results for nonlinear elliptic equations on those manifolds.
متن کاملFourier Method for One Dimensional Schrödinger Operators with Singular Periodic Potentials
By using quasi–derivatives, we develop a Fourier method for studying the spectral properties of one dimensional Schrödinger operators with periodic singular potentials.
متن کاملSpectral gaps of Schrödinger operators with periodic singular potentials
By using quasi–derivatives we develop a Fourier method for studying the spectral gaps of one dimensional Schrödinger operators with periodic singular potentials v. Our results reveal a close relationship between smoothness of potentials and spectral gap asymptotics under a priori assumption v ∈ H loc (R). They extend and strengthen similar results proved in the classical case v ∈ L loc (R).
متن کامل